Unterrichtsvorhaben der Qualifikationsphase - Grundkurs (ca. 152 Stunden)			
Unterrichtsvorhaben	Inhaltsfelder, Inhaltliche Schwerpunkte	Konkretisierte Kompetenzerwartungen Schülerinnen und Schüler	
Unterrichtsvorhaben I Periodische Vorgänge in alltäglichen Situationen Wie lassen sich zeitlich und räumlich periodische Vorgänge am Beispiel von harmonischen Schwingungen sowie mechanischen Wellen beschreiben und erklären? ca. 10 Ustd.	Klassische Wellen und geladene Teilchen in Feldern Klassische Wellen: Federpendel, mechanische harmonische Schwingungen und Wellen; Huygens'sches Prinzip, Reflexion, Brechung, Beugung; Superposition und Polarisation von Wellen Bezüge (Seitenzahlen) zum Buch FOKUS PHY-SIK SII; Buch: S. 182 ff	 erläutern die Eigenschaften harmonischer mechanischer Schwingungen und Wellen, deren Beschreibungsgrößen Elongation, Amplitude, Periodendauer, Frequenz, Wellenlänge und Ausbreitungsgeschwindigkeit sowie deren Zusammenhänge (S1, S3), erläutern am Beispiel des Federpendels Energieumwandlungen harmonischer Schwingungen (S1, S2, K4), erklären mithilfe der Superposition stehende Wellen (S1, E6, K3), erläutern die lineare Polarisation als Unterscheidungsmerkmal von Longitudinal- und Transversalwellen (S2, E3, K8), konzipieren Experimente zur Abhängigkeit der Periodendauer von Einflussgrößen beim Federpendel und werten diese unter Anwendung digitaler Werkzeuge aus (E6, S4, K6), (MKR 1.2) beurteilen Maßnahmen zur Störgeräuschreduzierung hinsichtlich deren Eignung (B7, K1, K5). (VB B Z1) 	
Unterrichtsvorhaben II Beugung und Interferenz von Wellen - ein neues Lichtmodell Wie kann man Ausbreitungsphänomene von Licht beschreiben und erklären? ca. 18 Ustd.	Klassische Wellen und geladene Teilchen in Feldern • Klassische Wellen: Federpendel, mechanische harmonische Schwingungen und Wellen; Huygens'sches Prinzip, Reflexion, Brechung, Beugung; Superposition und Polarisation von Wellen Buch: S. 208 ff; 244 ff	 erläutern mithilfe der Wellenwanne qualitativ auf der Grundlage des Huygens'schen Prinzips Kreiswellen, ebene Wellen sowie die Phänomene Reflexion, Brechung, Beugung und Interferenz (S1, E4, K6), erläutern die lineare Polarisation als Unterscheidungsmerkmal von Longitudinal- und Transversalwellen (S2, E3, K8), weisen anhand des Interferenzmusters bei Doppelspalt- und Gitterversuchen mit monound polychromatischem Licht die Wellennatur des Lichts nach und bestimmen daraus Wellenlängen (E7, E8, K4). 	

Unterrichtsvorhaben III

Erforschung des Elektrons

Wie können physikalische Eigenschaften wie die Ladung und die Masse eines Elektrons gemessen werden?

ca. 26 Ustd.

Klassische Wellen und geladene Teilchen in Feldern

 Teilchen in Feldern: elektrische und magnetische Felder; elektrische Feldstärke, elektrische Spannung; magnetische Flussdichte; Bahnformen von geladenen Teilchen in homogenen Feldern

> Buch: S. 104 ff Buch: S. 134 ff

- stellen elektrische Feldlinienbilder von homogenen, Radial- und Dipolfeldern sowie magnetische Feldlinienbilder von homogenen und Dipolfeldern dar (S1, K6),
- beschreiben Eigenschaften und Wirkungen homogener elektrischer und magnetischer Felder und erläutern die Definitionsgleichungen der elektrischen Feldstärke und der magnetischen Flussdichte (S2, S3, E6),
- erläutern am Beispiel des Plattenkondensators den Zusammenhang zwischen elektrischer Spannung und elektrischer Feldstärke im homogenen elektrischen Feld (S3)
- berechnen Geschwindigkeitsänderungen von Ladungsträgern nach Durchlaufen einer elektrischen Spannung (S1, S3, K3),
- erläutern am *Fadenstrahlrohr* die Erzeugung freier Elektronen durch den glühelektrischen Effekt, deren Beschleunigung beim Durchlaufen eines elektrischen Felds sowie deren Ablenkung im homogenen magnetischen Feld durch die Lorentzkraft (S4, S6, E6, K5).
- entwickeln mithilfe des Superpositionsprinzips elektrische und magnetische Feldlinienbilder (E4, E6),
- modellieren mathematisch die Beobachtungen am *Fadenstrahlrohr* und ermitteln aus den Messergebnissen die Elektronenmasse (E4, E9, K7),
- erläutern Experimente zur Variation elektrischer Einflussgrößen und deren Auswirkungen auf die Bahnformen von Ladungsträgern in homogenen elektrischen und magnetischen Feldern (E2, K4),
- schließen aus der statistischen Auswertung einer vereinfachten Version des *Millikan-Versuchs* auf die Existenz einer kleinsten Ladung (E3, E11, K8),
- wenden eine Messmethode zur Bestimmung der magnetischen Flussdichte an (E3, K6),
- erschließen sich die Funktionsweise des Zyklotrons auch mithilfe von Simulationen (E1, E10, S1, K1),
- beurteilen die Schutzwirkung des Erdmagnetfeldes gegen den Strom geladener Teilchen aus dem Weltall

Unterrichtsvorhaben IV

Photonen und Elektronen als Quantenobjekte

Kann das Verhalten von Elektronen und Photonen durch ein gemeinsames Modell beschrieben werden?

ca. 18 Ustd.

Quantenobjekte

- Teilchenaspekte von Photonen: Energiequantelung von Licht, Photoeffekt
- Wellenaspekt von Elektronen: De-Broglie-Wellenlänge, Interferenz von Elektronen am Doppelspalt
- Photon und Elektron als Quantenobjekte: Wellenund Teilchenmodell, Kopenhagener Deutung

Buch: S. 318 ff Buch: S. 324 ff Buch: S. 344 ff

- erläutern anhand eines *Experiments zum Photoeffekt* den Quantencharakter von Licht (S1, E9, K3),
- stellen die Lichtquanten- und De-Broglie-Hypothese sowie deren Unterschied zur klassischen Betrachtungsweise dar (S1, S2, E8, K4),
- wenden die De-Broglie-Hypothese an, um das Beugungsbild beim *Doppelspaltversuch* mit Elektronen quantitativ zu erklären (S1, S5, E6, K9),
- erläutern die Determiniertheit der Zufallsverteilung der diskreten Energieabgabe beim Doppelspaltexperiment mit stark intensitätsreduziertem Licht (S3, E6, K3),
- berechnen Energie und Impuls über Frequenz und Wellenlänge für Quantenobjekte (S3),
- erklären an geeigneten Darstellungen die Wahrscheinlichkeitsinterpretation für Quantenobjekte (S1, K3),
- erläutern bei Quantenobjekten die "Welcher-Weg"-Information als Bedingung für das Auftreten oder Ausbleiben eines Interferenzmusters in einem Interferenzexperiment (S2, K4),
- leiten anhand eines Experiments zum Photoeffekt den Zusammenhang von Energie, Wellenlänge und Frequenz von Photonen ab (E6, S6),
- untersuchen mithilfe von Simulationen das Verhalten von Quantenobjekten am Doppelspalt (E4, E8, K6, K7), (MKR 1.2)
- beurteilen an Beispielen die Grenzen und Gültigkeitsbereiche von Wellen- und Teilchenmodellen für Licht und Elektronen (E9, E11, K8),
- erläutern die Problematik der Übertragbarkeit von Begriffen aus der Anschauungswelt auf Quantenobjekte (B1, K8),
- stellen die Kontroverse um den Realitätsbegriff der Kopenhagener Deutung dar (B8, K9),
- beschreiben anhand quantenphysikalischer Betrachtungen die Grenzen der physikalischen Erkenntnisfähigkeit (B8, E11, K8).

Unterrichtsvorhaben V Energieversorgung und Transport mit Generatoren und Transformatoren

Wie kann elektrische Energie gewonnen, verteilt und bereitgestellt werden?

Elektrodynamik und Energieübertragung

- Elektrodynamik: magnetischer Fluss, elektromagnetische Induktion, Induktionsgesetz; Wechselspannung; Auf- und Entladevorgang am Kondensator
- erläutern das Auftreten von Induktionsspannungen am Beispiel der *Leiterschaukel* durch die Wirkung der Lorentzkraft auf bewegte Ladungsträger (S3, S4, K4),
- führen Induktionserscheinungen bei einer Leiterschleife auf die zeitliche Änderung der magnetischen Flussdichte oder die zeitliche Änderung der durchsetzten Fläche zurück (S1, S2, K4),
- beschreiben das Induktionsgesetz mit der mittleren Änderungsrate und in differentieller Form des magnetischen Flusses (S7),

ca. 18 Ustd.	Energieübertragung: Ge- nerator, Transformator; elektromagnetische	untersuchen die gezielte Veränderung elektrischer Spannungen und Stromstärken durch Transformatoren mithilfe angeleiteter Experimente als Beispiel für die technische Anwendung der Induktion (S1, S4, E6, K8),
	Schwingung	erklären am physikalischen <i>Modellexperiment zu Freileitungen</i> technologische Prinzipien der Bereitstellung und Weiterleitung von elektrischer Energie (S1, S3, K8),
	Buch: S. 148 ff Buch: S. 154 ff Buch: S. 158 ff	• interpretieren die mit einem <i>Oszilloskop</i> bzw. <i>Messwerterfassungssystem</i> aufgenommenen Daten bei elektromagnetischen Induktions- und Schwingungsversuchen unter Rückbezug auf die experimentellen Parameter (E6, E7, K9),
	Buch: S. 160 ff	modellieren mathematisch das Entstehen von Induktionsspannungen für die beiden Spezialfälle einer zeitlich konstanten Fläche und einer zeitlich konstanten magnetischen Flussdichte (E4, E6, K7),
		erklären das Entstehen von sinusförmigen Wechselspannungen in <i>Generatoren</i> mithilfe des Induktionsgesetzes (E6, E10, K3, K4),
		stellen Hypothesen zum Verhalten des Rings beim <i>Thomson'schen Ringversuch</i> bei Zunahme und Abnahme des magnetischen Flusses im Ring auf und erklären diese mithilfe des Induktionsgesetzes (E2, E9, S3, K4, K8),
		beurteilen ausgewählte Beispiele zur Energiebereitstellung und -umwandlung unter technischen und ökologischen Aspekten (B3, B6, K8, K10), (VB ÜB Z2)
		beurteilen das Potential der Energierückgewinnung auf der Basis von Induktionsphänomenen bei elektrischen Antriebssystemen (B7, K2).
Unterrichtsvorhaben VI Anwendungsbereiche des Kondensators Wie kann man Energie in elektrischen Systemen spei- chern?	Elektrodynamik und Energieübertragung Elektrodynamik: magnetischer Fluss, elektromagnetische Induktion, Induktionsgesetz; Wechselspannung; Auf- und Entladevorgang am Kondensator	 beschreiben die Kapazität als Kenngröße eines Kondensators und bestimmen diese für den Spezialfall des Plattenkondensators in Abhängigkeit seiner geometrischen Daten (S1, S3), erläutern qualitativ die bei einer elektromagnetischen Schwingung in der Spule und am Kondensator ablaufenden physikalischen Prozesse (S1, S4, E4), untersuchen den Auf- und Entladevorgang bei Kondensatoren unter Anleitung experimentell (S4, S6, K6), modellieren mathematisch den zeitlichen Verlauf der Stromstärke bei Auf- und Entladevorgängen bei Kondensatoren (E4, E6, S7),
Wie kann man elektrische Schwingungen erzeugen? ca. 15 UStd.	Energieübertragung: Generator, Transformator; elektromagnet. Schwingung Buch: S. 154/198 ff	 interpretieren den Flächeninhalt zwischen Graph und Abszissenachse im Q-U-Diagramm als Energiegehalt des Plattenkondensators (E6, K8), beurteilen den Einsatz des Kondensators als Energiespeicher in ausgewählten alltäglichen Situationen (B3, B4, K9).

Unterrichts
Mensch und Chancen ur sierender S
Wie wirkt ior lung auf den Körper?
ca. 12 Ustd.
Unterrichts
Erforschung und Makrok
Wie lassen s ralanalysen auf die Struk

Unterrichtsvorhaben VII

Mensch und Strahlung -Chancen und Risiken ionisierender Strahlung

Wie wirkt ionisierende Strahlung auf den menschlichen Körper?

Strahlung und Materie

 Strahlung: Spektrum der elektromagnetischen Strahlung; ionisierende Strahlung, Geiger-Müller-Zählrohr, biologische Wirkungen

> Buch: S. 268 ff Buch: S. 384 ff Buch: S. 394 ff Buch: S. 398 ff Buch: S. 400 ff Buch: S. 418 ff Buch: S. 424 ff Buch: S. 426 ff

- erklären die Entstehung von *Bremsstrahlung* und *charakteristischer Röntgenstrahlung* (S3, E6, K4),
- unterscheiden α -, β -, γ Strahlung, Röntgenstrahlung und Schwerionenstrahlung als Arten ionisierender Strahlung (S1),
- ordnen verschiedene Frequenzbereiche dem elektromagnetischen Spektrum zu (S1, K6),
- erläutern den Aufbau und die Funktionsweise des *Geiger-Müller-Zählrohrs* als Nachweisgerät für ionisierende Strahlung (S4, S5, K8),
- untersuchen experimentell anhand der Zählraten bei *Absorptionsexperimenten* unterschiedliche Arten ionisierender Strahlung (E3, E5, S4, S5),
- begründen wesentliche biologisch-medizinische Wirkungen ionisierender Strahlung mit deren typischen physikalischen Eigenschaften (E6, K3),
- quantifizieren mit der Größe der effektiven Dosis die Wirkung ionisierender Strahlung und bewerten daraus abgeleitete Strahlenschutzmaßnahmen (E8, S3, B2).
- bewerten die Bedeutung hochenergetischer Strahlung hinsichtlich der Gesundheitsgefährdung sowie ihres Nutzens bei medizinischer Diagnose und Therapie (B5, B6, K1, K10). (VB B Z3).

Unterrichtsvorhaben VIII

Erforschung des Mikround Makrokosmos

Wie lassen sich aus Spektralanalysen Rückschlüsse auf die Struktur von Atomen ziehen?

ca. 19 Ustd.

Atomphysik

 Atomphysik: Linienspektrum, Energieniveauschema, Kern-Hülle-Modell, Röntgenstrahlung

> Buch: S. 330 ff Buch: S. 336 ff Buch: S. 338 ff Buch: S. 354 ff Buch: S. 362 ff

Buch: S. 324/370 ff

- erklären die Energie emittierter und absorbierter Photonen am Beispiel von Linienspektren leuchtender Gase und Fraunhofer'scher Linien mit den unterschiedlichen Energieniveaus in der Atomhülle (S1, S3, E6, K4),
- beschreiben die Energiewerte für das Wasserstoffatom mithilfe eines quantenphysikalischen Atommodells (S2),
- interpretieren die Orbitale des Wasserstoffatoms als Veranschaulichung der Nachweiswahrscheinlichkeiten für das Elektron (S2, K8),
- erklären die Entstehung von Bremsstrahlung und charakteristischer Röntgenstrahlung (S3, E6, K4),
- interpretieren die Bedeutung von *Flammenfärbung* und *Linienspektren* bzw. *Spektralanalyse* für die Entwicklung von Modellen der diskreten Energiezustände von Elektronen in der Atomhülle (E6, E10),
- interpretieren die Messergebnisse des Franck-Hertz-Versuchs (E6, E8, K8),
- erklären das charakteristische Röntgenspektrum mit den Energieniveaus der Atomhülle (E6),
- identifizieren vorhandene Stoffe in der Sonnen- und Erdatmosphäre anhand von Spektraltafeln des Sonnenspektrums (E3, E6, K1),
- stellen an der historischen Entwicklung der Atommodelle die spezifischen Eigenschaften und Grenzen naturwissenschaftlicher Modelle heraus (B8, E9).

Unterrichtsvorhaben IX

Massendefekt und Kernumwandlungen

Wie lassen sich energetische Bilanzen bei Umwandlungs- und Zerfallsprozessen quantifizieren?

Wie entsteht ionisierende Strahlung?

ca. 16 Ustd.

Strahlung und Materie

 Kernphysik: Nukleonen; Zerfallsprozesse und Kernumwandlungen, Kernspaltung und -fusion

> Buch: S. 384 ff Buch: S. 388 ff Buch: S. 394 ff Buch: S. 398 ff Buch: S. 418 ff

> Buch: S. 404 ff

- erläutern den Begriff der Radioaktivität und zugehörige Kernumwandlungsprozesse auch mithilfe der Nuklidkarte (S1, S2),
- wenden das zeitliche Zerfallsgesetz für den radioaktiven Zerfall an (S5, S6, K6),
- erläutern qualitativ den Aufbau eines Atomkerns aus Nukleonen, den Aufbau der Nukleonen aus Quarks sowie die Rolle der starken Wechselwirkung für die Stabilität des Kerns (S1, S2),
- erläutern qualitativ am β⁻-Umwandlung die Entstehung der Neutrinos mithilfe der schwachen Wechselwirkung und ihrer Austauschteilchen (S1, S2, K4),
- erklären anhand des Zusammenhangs $E = \Delta m c^2$ die Grundlagen der Energiefreisetzung bei Kernspaltung und -fusion über den Massendefekt (S1) (S1),
- ermitteln im Falle eines einstufigen radioaktiven Zerfalls anhand der gemessenen Zählraten die Halbwertszeit (E5, E8, S6),
- vergleichen verschiedene Vorstellungen von der Materie mit den Konzepten der modernen Physik (B8, K9).